The Relation Between Dominance and Phenotype

- A dominant allele does not subdue a recessive allele; alleles don't interact
- Alleles are simply variations in a gene's nucleotide sequence
- For any character, dominance/recessiveness relationships of alleles depend on the level at which we examine the phenotype

- Tay-Sachs disease is fatal; a dysfunctional enzyme causes an accumulation of lipids in the brain
 - At the *organismal* level, the allele is recessive
 - At the biochemical level, the phenotype (i.e., the enzyme activity level) is incompletely dominant
 - At the *molecular* level, the alleles are codominant

Frequency of Dominant Alleles

- Dominant alleles are not necessarily more common in populations than recessive alleles
- For example, one baby out of 400 in the United States is born with extra fingers or toes

- The allele for this unusual trait is dominant to the allele for the more common trait of five digits per appendage
- In this example, the recessive allele is far more prevalent than the population's dominant allele

Multiple Alleles

- Most genes exist in populations in more than two allelic forms
- For example, the four phenotypes of the ABO blood group in humans are determined by three alleles for the enzyme (I) that attaches A or B carbohydrates to red blood cells: I^A , I^B , and i.
- The enzyme encoded by the I^A allele adds the A carbohydrate, whereas the enzyme encoded by the I^B allele adds the B carbohydrate; the enzyme encoded by the i allele adds neither

Allele	Carbohydrate A△	
P		
J B	BO	
į	none	

(a) The three alleles for the ABO blood groups and their associated carbohydrates

Genotype	Red blood cell appearance	Phenotype (blood group)	
PP or Pi		A	
<i> ^B ^B</i> or <i> ^Bi</i>		В	
J A J B		AB	
ii		0	
(b) Blood group genotypes and phenotypes			

Pleiotropy

- Most genes have multiple phenotypic effects, a property called pleiotropy
- For example, pleiotropic alleles are responsible for the multiple symptoms of certain hereditary diseases, such as cystic fibrosis and sickle-cell disease

Extending Mendelian Genetics for Two or More Genes

 Some traits may be determined by two or more genes

Epistasis

- In epistasis, a gene at one locus alters the phenotypic expression of a gene at a second locus
- For example, in mice and many other mammals, coat color depends on two genes
- One gene determines the pigment color (with alleles B for black and b for brown)
- The other gene (with alleles C for color and c for no color) determines whether the pigment will be deposited in the hair

Polygenic Inheritance

- Quantitative characters are those that vary in the population along a continuum
- Quantitative variation usually indicates
 polygenic inheritance, an additive effect of
 two or more genes on a single phenotype
- Skin color in humans is an example of polygenic inheritance

Phenotypes:

¹/₆₄

⁶/₆₄

15/₆₄

20/₆₄ 15/₆₄

6/64

1/64

Number of

dark-skin alleles: 0

1

2

4

3

5

6

2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummir

Nature and Nurture: The Environmental Impact on Phenotype

- Another departure from Mendelian genetics arises when the phenotype for a character depends on environment as well as genotype
- The norm of reaction is the phenotypic range of a genotype influenced by the environment
- For example, hydrangea flowers of the same genotype range from blue-violet to pink, depending on soil acidity

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- Norms of reaction are generally broadest for polygenic characters
- Such characters are called multifactorial because genetic and environmental factors collectively influence phenotype

Integrating a Mendelian View of Heredity and Variation

- An organism's phenotype includes its physical appearance, internal anatomy, physiology, and behavior
- An organism's phenotype reflects its overall genotype and unique environmental history

Concept 14.4: Many human traits follow Mendelian patterns of inheritance

- Humans are not good subjects for genetic research
 - Generation time is too long
 - Parents produce relatively few offspring
 - Breeding experiments are unacceptable
- However, basic Mendelian genetics endures as the foundation of human genetics

Pedigree Analysis

- A pedigree is a family tree that describes the interrelationships of parents and children across generations
- Inheritance patterns of particular traits can be traced and described using pedigrees

(b) Is an attached earlobe a dominant or recessive trait?
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

(a) Is a widow's peak a dominant or recessive trait?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Fig. 14-15c 1st generation Ff Ff Ff (grandparents) 2nd generation (parents, aunts, and uncles) FF or Ff ff ff **Ff** 3rd generation (two sisters) FF or Ff **Attached earlobe** Free earlobe

(b) Is an attached earlobe a dominant or recessive trait?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- Pedigrees can also be used to make predictions about future offspring
- We can use the multiplication and addition rules to predict the probability of specific phenotypes

Recessively Inherited Disorders

Many genetic disorders are inherited in a recessive manner

The Behavior of Recessive Alleles

- Recessively inherited disorders show up only in individuals homozygous for the allele
- Carriers are heterozygous individuals who carry the recessive allele but are phenotypically normal (i.e., pigmented)
- Albinism is a recessive condition characterized by a lack of pigmentation in skin and hair

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- If a recessive allele that causes a disease is rare, then the chance of two carriers meeting and mating is low
- Consanguineous matings (i.e., matings between close relatives) increase the chance of mating between two carriers of the same rare allele
- Most societies and cultures have laws or taboos against marriages between close relatives

Cystic Fibrosis

- Cystic fibrosis is the most common lethal genetic disease in the United States, striking one out of every 2,500 people of European descent
- The cystic fibrosis allele results in defective or absent chloride transport channels in plasma membranes
- Symptoms include mucus buildup in some internal organs and abnormal absorption of nutrients in the small intestine

Sickle-Cell Disease

- Sickle-cell disease affects one out of 400 African-Americans
- The disease is caused by the substitution of a single amino acid in the hemoglobin protein in red blood cells
- Symptoms include physical weakness, pain, organ damage, and even paralysis

Dominantly Inherited Disorders

- Some human disorders are caused by dominant alleles
- Dominant alleles that cause a lethal disease are rare and arise by mutation
- Achondroplasia is a form of dwarfism caused by a rare dominant allele

Parents

Huntington's Disease

- Huntington's disease is a degenerative disease of the nervous system
- The disease has no obvious phenotypic effects until the individual is about 35 to 40 years of age

Multifactorial Disorders

- Many diseases, such as heart disease and cancer, have both genetic and environmental components
- Little is understood about the genetic contribution to most multifactorial diseases

Genetic Testing and Counseling

 Genetic counselors can provide information to prospective parents concerned about a family history for a specific disease

Counseling Based on Mendelian Genetics and Probability Rules

 Using family histories, genetic counselors help couples determine the odds that their children will have genetic disorders

Tests for Identifying Carriers

 For a growing number of diseases, tests are available that identify carriers and help define the odds more accurately

Fetal Testing

- In amniocentesis, the liquid that bathes the fetus is removed and tested
- In chorionic villus sampling (CVS), a sample of the placenta is removed and tested
- Other techniques, such as ultrasound and fetoscopy, allow fetal health to be assessed visually in utero

PLAY

Video: Ultrasound of Human Fetus I

Fig. 14-18

Newborn Screening

 Some genetic disorders can be detected at birth by simple tests that are now routinely performed in most hospitals in the United States

Degree of dominance	Description	Example	
Complete dominance of one allele	Heterozygous phenotype same as that of homo-zygous dominant	PP Pp	
Incomplete dominance of either allele	Heterozygous phenotype intermediate between the two homozygous phenotypes	CR CR CR CW CW CW	
Codominance	Heterozygotes: Both phenotypes expressed	IA IB	
Multiple alleles	In the whole population, some genes have more than two alleles	ABO blood group alleles	
Pleiotropy	One gene is able to affect multiple phenotypic characters	Sickle-cell disease	

Fig. 14-UN3

Relationship among genes	Description	Example		
Epistasis	One gene affects the expression of another	BbCc x BbCc BC bc Bc bc BC bc Bc bc Bc bc A A A A A A A A A A A A A A A A A A		
Polygenic inheritance	A single phenotypic character is affected by two or more genes	AaBbCc		

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

If dependent assortment:

Parents × YyRr yyrr Sperm from YyRrplant Eggs from yyrr plant YyRr yyrr 1/2 yellow-round: 1/2 green-wrinkled Phenotypic ratio

If independent assortment:

1/4 yellow-round: 1/4 yellow-wrinkled: 1/4 green-round: 1/4 green-wrinkled

Phenotypic ratio

Genotypic ratio 1 Ii: 1 ii (2:2 is equivalent)

Phenotypic ratio 1 inflated: 1 constricted (2:2 is equivalent)

	Parents					
	AaTt × AaTt					
	₩					
Fanc	Sperm from					
Eggs from	AaTt plant					
AaTt plant	(AT)	(At)	$\overline{a7}$	(at)		
,						
(AT)	AATT	AAT+	AaTT	AaTt		
(At)	AAT+	AAtt	AaT+	Aat+		
			- 1011	7.427		
(aT)	AaTT	AaTt	aaTT	aaTt		
at	AaTt	Aatt	aaTt	aatt		
1						

Fraction predicted to have at least $=\frac{6}{16}$ or $\frac{3}{8}$ two recessive traits

9 green-inflated: 3 green-constricted: 3 yellow-inflated: 1 yellow-constricted

You should now be able to:

- Define the following terms: true breeding, hybridization, monohybrid cross, P generation, F₁ generation, F₂ generation
- 2. Distinguish between the following pairs of terms: dominant and recessive; heterozygous and homozygous; genotype and phenotype
- 3. Use a Punnett square to predict the results of a cross and to state the phenotypic and genotypic ratios of the F₂ generation

- 4. Explain how phenotypic expression in the heterozygote differs with complete dominance, incomplete dominance, and codominance
- Define and give examples of pleiotropy and epistasis
- 6. Explain why lethal dominant genes are much rarer than lethal recessive genes
- Explain how carrier recognition, fetal testing, and newborn screening can be used in genetic screening and counseling